ДОМ МЕНЮ ДОКИ ПОИСК


Погода   ›   Термины   ›

Радуга оптическое явление в атмосфере

Всем известное оптическое явление в атмосфере (см. Атмосфера); наблюдается, когда солнце освещает пелену падающего дождя и наблюдатель находится между солнцем и дождем. Явление это представляется в виде одной, реже — двух концентрических светлых дуг, рисующихся на небосводе со стороны падающего дождя и окрашенных концентрически в ряд "радужных" цветов. Внутренняя, наиболее часто видимая дуга окрашена с наружного края в красный цвет, с внутреннего — в фиолетовый; между ними в обычном порядке солнечного спектра (см.) лежат цвета: (красный), оранжевый, желтый, зеленый, синий и фиолетовый. Вторая, реже наблюдаемая дуга лежит над первой, окрашена обыкновенно более слабо, и порядок расположения цветов в ней обратный. Часть небосвода внутри первой дуги кажется обыкновенно очень светлой, часть небосвода над второй дугой кажется менее светлой, кольцевое же пространство между дугами кажется темным. Иногда, кроме этих двух главных элементов радуги, наблюдаются еще дополнительные дуги, представляющие слабые цветные размытые полосы, окаймляющие верхнюю часть внутреннего края первой радуги и реже — верхнюю часть внешнего края второй радуги.


край второй радуги


Иногда, очень редко, радуга наблюдается в тех же условиях и при освещении дождевой тучи луною. То же явление радуги замечается иногда и при освещении солнцем водяной пыли, носящейся в воздухе вблизи фонтана или водопада. Когда солнце закрыто легкими облаками — первая радуга кажется иногда совершенно не окрашенной и представляется в виде белесоватой дуги, более светлой, чем фон небосвода; такую радугу называют белой.

Наблюдения явления радуги показали, что дуги ее представляют правильные части кругов, центр которых лежит всегда на линии, проходящей через голову наблюдателя и солнце; так как таким образом центр радуги при высоко стоящем солнце лежит ниже горизонта, то наблюдатель видит лишь небольшую часть дуги; при закате и восходе солнца, когда солнце на горизонте, радуга представляется в виде полудуги окружности. С вершины очень высоких гор, с воздушного шара можно увидеть радугу и в виде большей части дуги окружности, так как при этих условиях центр радуги расположен над видимым горизонтом.


центр радуги расположен над видимым горизонтом


Наблюдения над радугой показали, что угол, образуемый двумя линиями, мысленно проведенными из глаз наблюдателя к центру дуги радуги и к ее окружности, или угловой радиус радуги, есть величина приблизительно постоянная и равная для первой радуги около 41°, для второй 52°. Элементарное объяснение явления радуги дано было еще в 1611 г. А. де-Домини в его сочинении "De Radiis Visus et Lucis", развито затем Декартом ("Les météores", 1637) и вполне разработано Ньютоном в его "Оптике" (1750). Согласно этому объяснению явление радуги происходит вследствие преломления и полного внутреннего отражения (см. Диоптрика) солнечных лучей в каплях дождя. Если на шаровую каплю жидкости упадет луч SA, то он (фиг. 1), претерпев преломление по направлению АВ, может отразиться от задней поверхности капли по направлению ВС и выйти, снова преломившись, по направлению CD.


преломление света в радуге


Фиг. 1.

Луч, иначе упавший на каплю, может, однако, в точке С (фиг. 2) второй раз отразиться по CD и выйти, преломившись, по направлению DE.


прохождение света через радугу


Фиг. 2.

Если на каплю упадет не один луч, но целый пучок параллельных лучей, то, как доказывается в оптике, все лучи, претерпвшие одно внутреннее отражение в капле воды, выйдут из капли в виде расходящегося конуса лучей (фиг. 3), ось которого расположена по направлению падающих лучей [В действительности пучок выходящих из капли лучей не представляет правильного конуса, и даже все составляющие его лучи не пересекаются в одной точке, только для простоты на следующих чертежах эти пучки приняты за правильные конусы с вершиной в центре капли.].


пучки света в центре капли


Фиг. 3.

Угол отверстия конуса зависит от коэффициента преломления (см. Диоптрика) жидкости, а так как коэффициент преломления для лучей различного цвета (различной длины волны), составляющих белый солнечный луч, неодинаков, то и угол отверстия конуса будет различный для лучей разного цвета, именно для фиолетовых будет меньше, чем для красных. Вследствие этого конус будет окаймлен цветным радужным краем, красным извне, фиолетовым внутри, причем, если капля водяная, то половина углового отверстия конуса SOR для красного цвета будет около 42°, для фиолетового (SOV) 40,5°. Исследование распределения света внутри конуса показывает, что почти весь свет сосредоточен в этой цветной кайме конуса и чрезвычайно слаб в центральных частях его; таким образом мы можем рассматривать лишь яркую цветную оболочку конуса, так как все внутренние лучи его слишком слабы, чтобы быть восприняты зрнием.


цветная оболочка радуги


Подобное же исследование лучей, дважды отразившихся в капле воды, покажет нам, что они выйдут такой же конической радужной оболочкой V'R' (фиг. 3), но красной с внутреннего края, фиолетовой с внешнего, причем для водяной капли половина углового отверстия второго конуса будет равна 50° для красного (SOR') и 54° для фиолетового края (SOV).

Представим себе теперь, что наблюдатель, глаз которого находится в точке О (фиг. 4), смотрит на ряд вертикальных дождевых капель А, В, С, D, E..., освещенных параллельными солнечными лучами, идущими по направлению SA, SB, SC и т. д.; пусть все эти капли расположены в плоскости, проходящей через глаз наблюдателя и солнце; каждая такая капля будет, по предыдущему, излучать две конических световых оболочки, общей осью которых будет падающий на каплю солнечный луч.


падающий на каплю солнечный луч


Фиг. 4.

Пусть капля В расположена так, что один из лучей, образующих внутреннюю оболочку первого (внутреннего) конуса, при продолжении пройдет через глаз наблюдателя; тогда наблюдатель увидит в В фиолетовую точку. Несколько выше капли В будет расположена такая капля С, что луч, идущий от внешней поверхности оболочки первого конуса, попадет в глаз и даст в нем впечатление красной точки в С; капли, промежуточные между В и С, дадут в глазу впечатление точек синих, зеленых, желтых и оранжевых. В сумме — глаз увидит в этой плоскости вертикальную радужную линию с фиолетовым концом внизу и красным наверху; если проведем через О и солнце линию SO, то угол, образуемый ею с линией ОВ, будет равен полуотверстию первого конуса для фиолетовых лучей, т. е. 40,5°, а угол КОС будет равен полуотверстию первого конуса для красных лучей, т. е. 42°. Если поворачивать угол КОВ вокруг OK, то опишет коническую поверхность и каждая капля, лежащая на круге пересечения этой поверхности с дождевой пеленой, даст впечатление светлой фиолетовой точки, а все точки вместе дадут фиолетовую дугу окружности с центром в К; точно так же образуется красная и промежуточные дуги, и в сумме глаз получит впечатление светлой радужной дуги, фиолетовой внутри, красной извне — первой радуги.


светлая радужная дуга


Приложив те же рассуждения ко второй внешней световой конической оболочке, излучаемой каплями и образованной солнечными лучами, дважды в капле отраженными, получим более широкую вторую концентрическую радугу с углом КОЕ, равным для внутреннего красного края — 50°, а для внешнего фиолетового — 54°. Вследствие двукратного отражения света в каплях, дающих эту вторую радугу, она будет значительно менее яркой, чем первая. Капли D, лежащие между С и Е, совершенно не излучают света в глаз, и потому пространство между двумя радугами будет казаться темным; от капель, лежащих ниже В и выше Е, в глаз попадут белые лучи, исходящие из центральных частей конусов и потому весьма слабые; это объясняет, почему пространство под первой и над второй радугой кажется нам слабо освещенным.

Нерезкость и размытость красок радуги объясняется тем, что источником освещения является не точка, но целая поверхность — солнце, и что отдельные более резкие радуги, образуемые отдельными точками солнца, налагаются друг на друга. Если солнце светит сквозь пелену тонких облаков, то светящимся источником является облако, окружающее солнце, на протяжении 2 —3° и отдельные цветные полосы настолько налагаются друг на друга, что глаз уже не различает цветов, а видит лишь бесцветную светлую дугу — белую радугу.


вид радуги с гор


Изложенная теория предсказывает далее, что некоторые лучи в водяных каплях претерпевают 3-4-5-кратное отражение и больше и выходят из капли радужными коническими оболочками, образующими радугу третью, четвертую, пятую и т. д. или, как говорят, радуга высших порядков. Исследование показывает, однако, что конусы радуги третьего и четвертого порядка направлены отверстиями от солнца; эти радуги были бы видны наблюдателю, смотрящему через дождевую пелену на солнце, если бы ослепительный свет последнего не препятствовал заметить их. Радуга пятого порядка направлена так же, как радуга первого и второго, и имеет угловой радиус в 55°; ее, по-видимому, однако, никогда не наблюдали по причине крайней слабости света, излучаемого ею.

Миллер, Пульфрих, Билье и друг. изучали искусственные радуги, получаемые при наблюдении отражения и преломления света в цилиндрической струе воды, освещаемой источником, помещенным за наблюдателем, и при этих условиях могли заметить радуги до 19 порядка; измеренные ими угловые радиусы радуг весьма близки к предсказываемым теорией. Изложенная элементарная теория радуг должна, однако, рассматриваться лишь как первое приближение к истинной теории радуги, так как она не выясняет появления дополнительных радуг и так как предсказываемые ею угловые радиусы радуг несколько больше наблюдаемых (наблюдались первые радуги с углами от 38° до 40°).

Юнг, Поттер и затем, в особенности Эри (1838—48), разработали более совершенную теорию радуги, основанную на рассмотрении явлений дифракции (см.) при преломлении и отражении света в каплях воды. Эта теория, весьма сложная и не поддающаяся элементарному изложению, вполне объясняет все особенности радуги, а также появление дополнительных радуг. Согласно этой теории, угловые радиусы дополнительных радуг зависят от величины капель и эти радуги тем виднее, чем капли меньше.


радиусы дополнительных радуг зависят от величины капель


Так как дождевые капли увеличиваются по мере приближения к земле, то дополнительные радуги могут быть хорошо видимы лишь при преломлении и отражении света в высоко расположенных слоях дождевой пелены, то есть при небольшой высоте солнца и только у верхних частей первой и второй радуги. Полная теория белой радуги дана была Пертнером в 1897 г. Часто возбуждался вопрос о том, видят ли различные наблюдатели одну и ту же радугу и представляет ли радуга, видимая в тихом зеркале большого водного резервуара, отражение непосредственно наблюдаемой радуги.

Элементарная теория радуги очевидно указывает, что различные наблюдатели видят радуги, образованные различными каплями дождя, т. е. разные радуги, и что кажущееся отражение радуги есть та радуга, которую видел бы наблюдатель, помещенный под отражающей поверхностью на таком расстоянии от нее вниз, на каком он находится над нею. Наблюдавшиеся в редких случаях, в особенности на море, пересекающиеся эксцентричные радуги объясняются отражением света от водной поверхности за спиной наблюдателя и появлением, таким образом, двух источников света (солнца и отражения его), дающих каждый свою радугу.

Подроб. см. Airy, "Transactions of the C ambridge Philosophical Society" (т. VI, 1838); Perntner, "Sitzungsb. d. Wiener Akademie" (т. 106, 1897), а также Mascart, "Traité d'Optique" (т. I, стр. 382—405).


радуга


При написании этого текста использовался материал из
Энциклопедического словаря Брокгауза Ф.А. и Ефрона И.А. (1890—1907).


Английский
радуга – rainbow


<< Назад: Общий список терминов связанных с погодой



Наверх


Рекомендуем Вам посмотреть популярные разделы сайта myvaleology.com: MENU с описанием разделов


СОЦСЕТИ ВКЛАД ДИЕТА СПОРТ
Написать администратору Карта сайта

Версия all4-8