ДОМ МЕНЮ ДОКИ ПОИСК


Спорт   ›   Статьи   ›

Оценка функций дыхания при занятиях спортом

Содержание статьи «Оценка функций дыхания при занятиях спортом»:

Система внешнего дыхания

Параметры дыхательной системы

Таблицы Гаррис-Бенедикта

Оценки и пробы функций дыхания


Дыхание — это единый процесс, осуществляемый целостным организмом и состоящий из трех неразрывных звеньев: а) внешнего дыхания, то есть газообмена между внешней средой и кровью легочных капилляров; б) переноса газов, осуществляемого системами кровообращения; в) внутреннего (тканевого) дыхания, то есть газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту (рис. Функции органов дыхания).

Функции органов дыхания

Функции органов дыхания

Органы грудной полости (а). Периферическая и центральная нервная система (б).
а: 1 — полость носа, 2 — гортань, 3 — трахея, 4 — бронхи, 5 — верхушка легкого, 6 — ротовая часть глотки, 7 — ветви нижне-долевого бронха, 8 — диафрагма, 9 — альвеолы.
б: 1 — головной мозг, 2 — спинной мозг, 3 — седалищный нерв, 4 — зрительный нерв, 5 — лицевой нерв, 6 — блуждающий нерв, 7 — узлы симпатического ствола, 8 — солнечное сплетение, 9 — межреберные нервы, 10 — поясничное сплетение, 11 — крестцовое сплетение, 12 — бедренный нерв, 13 — запирательный нерв, 14 — локтевой нерв, 15 — срединный нерв, 16 — лучевой нерв, 17 — плечевое сплетение.


Основу тканевого дыхания составляют сложные окислительно-восстановительные реакции, сопровождающиеся освобождением энергии, которая необходима для жизнедеятельности организма. (см. Виды и классификация физической работы)

Работоспособность человека (в частности, спортсмена) определяется в основном тем, какое количество кислорода (O2) забрано из наружного воздуха в кровь легочных капилляров и доставлено в ткани и клетки. Указанные выше три системы дыхания тесно связаны между собой и обладают взаимной компенсацией. Так, при сердечной недостаточности наступает одышка, при недостатке O2 в атмосферном воздухе (например, в среднегорье) увеличивается количество эритроцитов — переносчиков кислорода, при заболеваниях легких наступает тахикардия.

Система внешнего дыхания

Система внешнего дыхания состоит из легких, верхних дыхательных путей и бронхов, грудной клетки и дыхательных мышц (межреберные, диафрагма и др.).

Внешнее дыхание обеспечивает обмен газов между альвеолярным воздухом и кровью легочных капилляров, то есть насыщение венозной крови кислородом и освобождение ее от избытка углекислоты, что свидетельствует о взаимосвязи функции внешнего дыхания с регуляцией кислотно-щелочного равновесия.

В физиологии дыхания функцию внешнего дыхания разделяют на три основные процесса — вентиляцию, диффузию и перфузию (кровоток в капиллярах легких). (см. Массаж при остром бронхите)

Под вентиляцией следует понимать обмен газа между альвеолярным и атмосферным воздухом. От уровня альвеолярной вентиляции зависит постоянство газового состава альвеолярного воздуха.

Альвеолярная вентиляция равна разности между объемом дыхания в минуту и объемом «мертвого» пространства, умноженной на число дыханий в минуту. Объем вентиляции зависит прежде всего от потребности организма в кислороде при выведении определенного количества углекислого газа, а также от состояния дыхательных мышц, проходимости бронхов и пр. (см. Атмосфера)

Не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объем вдыхаемого воздуха равен 500 мл, то 150 мл остается в «мертвом» пространстве, и за минуту через дыхательную зону легких в среднем проходит (500 мл — 150 мл) х 15 (частота дыхания) = 5250 мл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. «Мертвое» пространство возрастает при глубоком вдохе, его объем зависит также от массы тела и позы обследуемого.

Диффузия — это процесс пассивного перехода кислорода из легких через альвеоло-капиллярную мембрану в гемоглобин легочных капилляров, с которыми кислород вступает в химическую реакцию.

Перфузия (орошение) легких кровью по сосудам малого круга. Об эффективности работы легких судят по соотношению между вентиляцией и перфузией. Указанное соотношение определяется числом вентилируемых альвеол, которые соприкасаются с хорошо перфузируемыми капиллярами. При спокойном дыхании у человека верхние отделы легкого расправляются полнее, чем нижние. При вертикальном положении нижние отделы перфузируются кровью лучше, чем верхние.

Легочная вентиляция повышается параллельно увеличению потребления кислорода, причем при максимальных нагрузках у тренированных лиц она может возрастать в 20—25 раз по сравнению с состоянием покоя и достигать 150 л/мин и более. Такое увеличение вентиляции обеспечивается возрастанием частоты и объема дыхания, причем частота может увеличиться до 60—70 дыханий в минуту, а дыхательный объем — с 15 до 50% жизненной емкости легких (H. Monod, M. Pottier, 1973). (см. Тренировочные программы и системы)

В возникновении гипервентиляции при физических нагрузках важную роль играет раздражение дыхательного центра в результате высокой концентрации углекислого газа и водородных ионов при высоком уровне молочной кислоты в крови.

Гипервентиляция, вызываемая физическими нагрузками, всегда ниже максимальной вентиляции, и увеличение диффузной способности кислорода в легких во время работы также не является предельным. Поэтому, если отсутствует легочная патология, дыхание не ограничивает мышечную работу. Важный показатель — потребление кислорода — отражает функциональное состояние кардиореспираторной системы. Существует связь между факторами циркуляции и дыхания, влияющими на объем потребляемого кислорода.

Во время физических нагрузок потребление кислорода значительно увеличивается. Это предъявляет повышенные требования к функции сердечно-сосудистой и дыхательной систем. Поэтому кардиореспираторная система при мышечной работе подвержена изменениям, которые зависят от интенсивности физических нагрузок.

Дыхание при занятиях спортом

Исследование функции внешнего дыхания в спорте позволяет наряду с системами кровообращения и крови оценить функциональное состояние спортсмена в целом и его резервные возможности.

Исследование начинают со сбора анамнеза, затем переходят к осмотру, перкуссии и аускультации.

Осмотр позволяет определить тип дыхания, установить наличие или отсутствие одышки (особенно при тестировании) и т.п. Определяют три типа дыхания: грудной, брюшной (диафрагмальный) и смешанный. При грудном типе дыхания на вдохе заметно поднимаются ключицы и происходит движение ребер. При этом типе дыхания объем легких возрастает главным образом за счет движения верхних и нижних ребер. При брюшном типе дыхания увеличение объема легких происходит в основном за счет движения диафрагмы — на вдохе она опускается вниз, несколько смещая органы брюшной полости. Поэтому стенка живота на вдохе при брюшном типе дыхания слегка выпячивается. У спортсменов, как правило, смешанный тип дыхания, где участвуют оба механизма увеличения объема грудной клетки. (см. Методики атлетической тренировки)

Перкуссия (поколачивание) позволяет определить изменение (если оно есть) плотности легких. Изменения в легких являются обычно следствием некоторых заболеваний (воспаление легких, туберкулез и др.).

Аускультация (выслушивание) определяет состояние воздухоносных путей (бронхов, альвеол). При различных заболеваниях органов дыхания прослушиваются весьма характерные звуки — различные хрипы, усиление или ослабление дыхательного шума и т.д.

Исследование внешнего дыхания проводят по показателям, характеризующим вентиляцию, газообмен, содержание и парциальное давление кислорода и углекислого газа в артериальной крови и по другим параметрам. Для исследования функции внешнего дыхания пользуются спирометрами, спирографами и специальными аппаратами открытого и закрытого типа. Наиболее удобно спирографическое исследование, при котором на движущейся бумажной ленте записывается кривая — спирограмма (рис. Спирографическое исследование). По этой кривой, зная масштаб шкалы аппарата и скорость движения бумаги, определяют следующие показатели легочной вентиляции: частоту дыхания (ЧД), дыхательный объем (ДО), минутный объем дыхания (МОД), жизненную емкость легких (ЖЕЛ), максимальную вентиляцию легких (МВЛ), остаточный объем легких (ОО), общую емкость легких (ОЕЛ). Kроме того, исследуется сила дыхательной мускулатуры, бронхиальная проходимость и др.

Спирографическое исследование

Спирографическое исследование

Спирограмма: 1 — МОД; 2 — ЖЕЛ, 3 — дыхательный объем (ДО); 4 — резервный объем вдоха; 5 — резервный объем выдоха; 6 — проба Тиффно-Вотчала; 7 — МВЛ


Легочная вентиляция связана с функцией дыхательных мышц (рис. Эмфизема легких). Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движениями частей грудной стенки и диафрагмы. Дыхательные мышцы — это те мышцы, сокращение которых изменяет объем грудной клетки.

Эмфизема легких

Эмфизема легких

Потребление кислорода дыхательными мышцами в норме и при патологии (эмфизема легких)


Вдох создается расширением грудной клетки (полости) и всегда является активным процессом. Обычно главную роль во вдохе играет диафрагма. При усиленном вдохе сокращаются дополнительные группы мышц.

Выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условия для вдоха. Расслабление связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. При усиленном выдохе в дополнение к другим мышечным группам действуют внутренние межреберные мышцы, а также брюшные мышцы. (см. Kлассификация нагрузочных тестов)

Объем легких при вдохе не всегда одинаков. Объем воздуха, вдыхаемый при обычном вдохе и выдыхаемый при обычном выдохе, называется дыхательным воздухом (ДВ).

Параметры дыхательной системы

Остаточный воздух (ОВ) — объем воздуха, оставшийся в невозвратившихся в исходное положение легких.

Частота дыхания (ЧД) — количество дыханий в 1 мин. Определение ЧД производят по спирограмме или по движению грудной клетки. Средняя частота дыхания у здоровых лиц — 16—18 в минуту, у спортсменов — 8—12. В условиях максимальной нагрузки ЧД возрастает до 40—60 в 1 мин.

Глубина дыхания (ДО) — объем воздуха спокойного вдоха или выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, пола и функционального состояния спортсмена. У здоровых лиц ДО составляет 300—800 мл.

Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания.

В спокойном состоянии воздух в трахее, бронхах, бронхиолах и в неперфузируемых альвеолах в газообмене не участвуют, так как не приходит в соприкосновение с активным легочным кровотоком — это так называемое «мертвое» пространство. (см. Тренировочные программы K. Cooper)

Часть дыхательного объема, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом. С физиологической точки зрения альвеолярная вентиляция — наиболее существенная часть наружного дыхания, так как она является тем объемом вдыхаемого за 1 мин воздуха, который обменивается газами с кровью легочных капилляров.

МОД измеряется произведением ЧД на ДО. У здоровых лиц ЧД — 16—18 в минуту, а ДО колеблется в пределах 350—750 мл, у спортсменов ЧД — 8—12 мл, а ДО — 900—1300 мл. Увеличение МОД (гипервентиляция) наблюдается вследствие возбуждения дыхательного центра, затруднения диффузии кислорода и др.

В покое МОД составляет 5—6 л, при напряженной физической нагрузке может возрастать в 20—25 раз и достигать 120—150 л в 1 мин и более. Увеличение МОД находится в прямой зависимости от мощности выполняемой работы, но только до определенного момента, после которого рост нагрузки уже не сопровождается увеличением МОД. (см. Тесты на физическую работоспособность)

Даже при самой тяжелой нагрузке МОД никогда не превышает 70—80% уровня максимальной вентиляции. Расчет должной величины МОД основан на том, что у здоровых лиц из каждого литра провентилированного воздуха поглощается примерно 40 мл кислорода (это так называемый коэффициент использования кислорода — KИ).

Его можно рассчитать по формуле:


Должный МОД = должное потребление кислорода / 40


а должную величину поглощения кислорода рассчитывают по формуле:


должный основной обмен (в ккал) / 7,07


где должный основной определяют по таблицам Гаррис-Бенедикта; 7,07 — число, полученное при умножении калорийной ценности 1 л кислорода (4,91 ккал) на число минут в сутках (1440 мин) и деленное на 1000.


Таблицы Гаррис-Бенедикта

Таблицы Гаррис-Бенедикта для определения основного обмена человека:

Фактор веса "А"

Фактор возраста и роста "Б"


Вентиляционным эквивалентом (ВЭ) называются соотношение между МОД и величиной потребления кислорода. В состоянии покоя 1 л кислорода в легких поглощается из 20—25 л воздуха. При тяжелой физической нагрузке вентиляционный эквивалент увеличивается и достигает 30—35 л. Под влиянием тренировки на выносливость вентиляционный эквивалент при стандартной нагрузке уменьшается. Это свидетельствует о более экономном дыхании у тренированных лиц.

Жизненная емкость легких (ЖЕЛ) состоит из дыхательного объема легких, резервного объема вдоха и резервного объема выдоха. ЖЕЛ зависит от пола, возраста, размера тела и тренированности. ЖЕЛ составляет в среднем у женщин 2,5—4 л, а у мужчин — 3,5—5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л.

Абсолютные значения ЖЕЛ мало показательны из-за индивидуальных колебаний. При оценке состояния обследуемого рекомендуется рассчитывать «должные» величины. (см. Тест со ступеньками)

Для расчета ЖЕЛ обычно используют формулу Anthony и Vernath (1961), в основу которой положена величина основного обмена (ккал/24 ч). Ее находят по таблицам Гаррис-Бенедикта соответственно полу, возрасту и массе тела.


ДЖЕЛ = величина основного обмена (ккал) х к,


где к — коэффициент: 2,3 у женщин, 2,6 — у мужчин. Величину основного обмена (ккал) определяем по таблицам Гаррис-Бенедикта, где находят фактор роста (Б) и фактор веса (А). Сумма А + Б и есть должная величина основного обмена. Должный основной обмен, как и ЖЕЛ, зависит от пола, возраста, роста и веса, легко определяется по специальным таблицам и выражается в килокалориях. Для выражения отношения в процентах фактической ЖЕЛ к должной пользуются формулой:


(фактическая ЖЕЛ / должная ЖЕЛ) х 100


ЖЕЛ считается нормальной, если составляет 100% должной величины. Для оценки ДЖЕЛ можно пользоваться номограммой (рис. Оценка жизненной емкости легких; Жизненная емкость легких). ЖЕЛ выражается в процентах к ДЖЕЛ.

Оценка жизненной емкости легких

Оценка жизненной емкости легких

Номограмма для оценки жизненной емкости легких (VС, мл). Соединяя прямой линией (1) соответствующие пункты на шкалах «Возраст» и «Относительная масса», на линии А отмечают точку пересечения. От этой точки проводят прямую линию (2) на шкалу «Рост». Точка пересечения со шкалой VC и будет должной величиной жизненной емкости легких (ДЖЕЛ). Пределы нормы: х(2) = 1200 мл (Amrein et al., 1969)


Жизненная емкость легких

Жизненная емкость легких

Номограмма для определения должной жизненной емкости легких в зависимости от роста и возраста


Общая емкость легких (ОЕЛ) представляет собой сумму ЖЕЛ и остаточного объема легких, то есть того воздуха, который остается в легких после максимального выдоха и может быть определен только косвенно. У молодых здоровых лиц — 75—80%. ОЕЛ занимает ЖЕЛ, а остальное приходится на остаточный объем. У спортсменов доля ЖЕЛ в структуре ОЕЛ увеличивается, что благоприятно отражается на эффективности вентиляции. (см. Воздух)

Максимальная вентиляция легких (МВЛ) — это предельно возможное количество воздуха, которое может быть провентилировано через легкие в единицу времени. Обычно форсированное дыхание проводится в течение 15 с и умножается на 4. Это и будет величина МВЛ. Большие колебания МВЛ снижают диагностическую ценность определения абсолютного значения этих величин. Поэтому полученную величину МВЛ приводят к должной. Для определения должной МВЛ пользуются формулой:


должная МВЛ = 1/2ЖЕЛ х 35,


или с использованием основного обмена по таблице А. Теличинаса (19б8); или по номограмме (рис. Оценка максимальной минутной вентиляции легких).

Оценка максимальной минутной вентиляции легких

Оценка максимальной минутной вентиляции легких

Номограмма для оценки максимальной минутной вентиляции легких (MMV). Соединяя прямой линией (1) соответствующие пункты на шкалах «масса» и «рост», находят точку пересечения со шкалой «Поверхность тела». Затем эту точку соединяют прямой (2) с соответствующим пунктом на шкале «Возраст» и на месте пересечения этой линии со шкалой MMV находят должную величину максимальной вентиляции (Amrein et al., 1969)


Снижение МВЛ происходит вследствие уменьшения объема вентилируемой легочной ткани и снижения бронхиальной проходимости, гиподинамии. У мужчин в возрасте 20—30 лет МВЛ колеблется от 100 до 180 (в среднем 140 л/мин), у женщин — от 70 до 120 л/мин. У высокорослых спортсменов с хорошо развитой дыхательной мускулатурой МВЛ иногда достигает 350 л/мин, у спортсменок — 250 л/мин (W. Hollmann, 1972).

Таким образом МВЛ наиболее точно и полно характеризует функцию внешнего дыхания в сравнении с другими спирографическими показателями.

Оценки и пробы функций дыхания

Для оценки бронхиальной проходимости используют тест ФЖЕЛ (форсированная жизненная емкость легких). Обследуемому предлагают максимально глубоко вдохнуть и быстро выдохнуть. ФЖЕЛ у здоровых лиц ниже ЖЕЛ на 200—300 мл. Тиффно предложил измерять ФЖЕЛ за первую секунду. В норме ФЖЕЛ за секунду составляет не менее 70% ЖЕЛ.

Пневмотахометрия проводится пневмотахометром Б.Е. Вотчала. Методом пневмотахометрии определяют скорость воздушной струи при максимально быстром вдохе и выдохе. У здоровых лиц этот показатель колеблется у мужчин от 5 до 8 л/с, у женщин — от 4 до 6 л/с. Отмечена зависимость пневмотахометрического показателя от ЖЕЛ и возраста. Обнаружено, что чем больше ЖЕЛ, тем выше максимальная скорость выдоха. Пневмотахометрический показатель зависит от бронхиальной проходимости, силы дыхательной мускулатуры спортсмена, его возраста, пола и функционального состояния. (см. Циклические виды спорта)

Величину максимальной скорости выдоха сравнивают с должными величинами, рассчитанными по формуле:


должная величина выдоха = ЖЕЛ х 1,2


Разница фактической и должной величин у здоровых людей не должна быть более 15% от должного уровня. У здоровых лиц показатель выдоха больше вдоха. С повышением тренированности отмечается преобладание максимальной скорости вдоха над выдохом. Увеличение скорости вдоха у спортсменов объясняется повышением резервных возможностей легких.

Дыхание в водных видах спорта

Объем воздуха, остающегося в легких после максимального выдоха (ОО) наиболее полно и точно характеризует газообмен в легких.

Одним из основных показателей внешнего дыхания является газообмен (анализ респираторных газов — углекислоты и кислорода в альвеолярном воздухе), то есть поглощение кислорода и выведение углекислоты. Газообмен характеризует внешнее дыхание на этапе «альвеолярный воздух — кровь легочных капилляров». Он исследуется методом газовой хроматографии.

Функциональная проба Розенталя позволяет судить о функциональных возможностях дыхательной мускулатуры. Проба проводится на спирометре, где у обследуемого 4—5 раз подряд с интервалом в 10—15 с определяют ЖЕЛ. В норме получают одинаковые показатели. Снижение ЖЕЛ на протяжении исследования указывает на утомляемость дыхательных мышц.

Пневмотонометрический показатель (ПТП, мм рт. ст.) дает возможность оценить силу дыхательной мускулатуры, которая является основой процесса вентиляции. ПТП снижается при гиподинамии, при длительных перерывах в тренировках, при переутомлении и др. Исследование проводится пневмотонометром В.И. Дубровского и И.И. Дерябина (1972). Исследуемый производит выдох (или вдох) в мундштук аппарата. В норме у здоровых лиц ПТП в среднем составляет у мужчин на выдохе 328 ± 17,4 мм рт. ст., на вдохе — 227 ± 4,1 мм рт. ст., у женщин, соответственно, — 246 ± 1,8 и 200 ± 7,0 мм рт. ст. При заболеваниях легких, гиподинамии, переутомлении эти показатели снижаются. (см. Массаж при стенокардии)

При физических нагрузках, особенно в циклических видах спорта (лыжные гонки, марафонский бег, гребля академическая и др.), дыхательная мускулатура является лимитирующим фактором.

На рис. Частота дыхания показана функция легких в состоянии покоя и мышечной нагрузки. Общая емкость легких во время нагрузки может несколько уменьшаться из-за увеличения внутриторакального объема крови. В состоянии покоя дыхательный объем (ДО) составляет 10—15% ЖЕЛ (450—600 мл), при физической нагрузке может достигать 50% ЖЕЛ. Таким образом, у людей с большой ЖЕЛ дыхательный объем в условиях интенсивной физической работы может составлять 3—4 л. Kак видно на рис. Частота дыхания, ДО увеличивается главным образом за счет резервного объема вдоха. Резервный объем выдоха даже при тяжелой физической нагрузке изменяется незначительно. Поскольку во время физической работы остаточный объем увеличивается, а функциональная остаточная емкость практически не изменяется, ЖЕЛ несколько уменьшается.

Частота дыхания

Частота дыхания

Функция легких в состоянии покоя (А) и при максимальной физической нагрузке (Б).
Частота дыхания (fR) 10—15 и 40—50 мин-1 соответственно 1 — дыхательный объем; 2 — резервный объем выдоха; 3 — резервный объем вдоха; 4 — остаточный объем; 5 — внутриторакальный объем крови.
МГВд — максимально глубокий вдох; НВд — нормальный вдох; НВы — нормальный выдох; МГВы — максимально глубокий выдох; а — жизненная емкость легких; б — функциональный остаточный объем, в — общий объем легких [R. Margaria, P. Cerretelli, 1968]


Пробы Штанге и Генчи дают некоторое представление о способности организма противостоять недостатку кислорода.

Проба Штанге. Измеряется максимальное время задержки дыхания после глубокого вдоха. При этом рот должен быть закрыт и нос зажат пальцами. Здоровые люди задерживают дыхание в среднем на 40—50 с; спортсмены высокой квалификации — до 5 мин, а спортсменки — от 1,5 до 2,5 мин.

С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается (с учетом других показателей), как улучшение подготовленности (тренированности) спортсмена. (см. Соединительнотканный массаж)

Проба Генчи. После неглубокого вдоха сделать выдох и задержать дыхание. У здоровых людей время задержки дыхания составляет 25—30 с. Спортсмены способны задержать дыхание на 60—90 с. При хроническом утомлении время задержки дыхания резко уменьшается.

Значение проб Штанге и Генчи увеличивается, если вести наблюдения постоянно, в динамике.

В.И. Дубровский,
академик РАЕН, МАНПО и Нью-Йоркской академии наук,
доктор медицинских наук, профессор
А.В. Дубровская, врач-педиатр

Дыхание

Дыхание - одна из основных жизненных функций, совокупность процессов, обеспечивающих поступление в организм О2, использование его в окислительно-восстановительных процессах, а также удаление из организма СО2 и некоторых других соединений, являющихся конечными продуктами обмена веществ.

Дыхание животных и человека

У простейших, губок, кишечнополостных и некоторых других организмов обмен газов между клетками и средой осуществляется путём диффузии через поверхность тела. С усложнением организации и увеличением размеров тела развиваются специальные структуры или органы, принимающие на себя дыхательные функции, а также система кровообращения, в которой циркулирует кровь или гемолимфа, способные связывать и переносить О2 и СO2.

У позвоночных животных и человека процесс дыхания включает внешнее дыхание, обеспечивающее обмен газов между внешней средой и кровью в органах дыхания, перенос О2 кровью от органов внешнего дыхания ко всем органам и тканям, а от них — СO2 в обратном направлении, и тканевое дыхание.

У многих водных животных внешнее дыхание осуществляется поверхностью тела и жабрами. Тело наземных членистоногих пронизано густой сетью трубочек — трахей, подводящих воздух к тканям.

Лёгочное дыхание, обеспечивающее наибольшую активность газообмена, развивается у земноводных (сочетается с кожным дыханием), но доминирующее значение приобретает у птиц (существенное значение имеют воздушные мешки) и млекопитающих, у которых оно обеспечивается ритмичной работой дыхательных мышц (главным образом межрёберных и диафрагмы). (см. Отдых и лечение в Болгарии)

У млекопитающих и человека газообмен происходит в основном в альвеолах лёгких и лишь около 2% О2 поступает в кровь через кожу. Количество воздуха, вентилируемого лёгкими в 1 мин, называется минутным объёмом дыхания (МОД). У человека в состоянии покоя он составляет 5—8 л/мин, во время физической работы — до 100 и более л/мин.

Обмен газов между альвеолярным воздухом и венозной кровью, поступающей в капилляры лёгких, осуществляется через алвеоло-капиллярную мембрану благодаря разности парциального давления О2 (60—70 мм рт. ст.) и СО2 (7 мм рт. ст.), а транспорт О2 кровью — в основном за счёт обратимого присоединения его к молекуле гемоглобина.

Переход О2 в ткани происходит при парциальном давлении его в артериальной крови, равном 100 мм рт. ст., а в тканях — 0—40 мм рт. ст.

СО2 переходит из тканей в кровь и из крови в альвеолы также благодаря перепадам его парциального давления: в тканях — около 60, в венозной крови — около 47, в альвеолах — около 35 мм рт. ст.

Около 80% СО2 переносится кровью в виде соединений с ионами щелочных металлов (бикарбонатов) и частично в связанной с гемоглобином форме (карбгемоглобин). (см. Массаж при миастении)

Интенсивность газообмена характеризуется величиной дыхательного коэффициента. Потребление О2 клетками и тканями лежит в основе тканевого дыхания, представляющего собой совокупность окислительно-восстановительных процессов и приводящего к распаду различных органических соединений с образованием конечных продуктов обмена веществ и высвобождением энергии, используемой организмом для осуществления физиологических функций.

Регуляция дыхания осуществляется ЦНС

Рефлекторные сокращения дыхательной мускулатуры обеспечиваются двигательными нервами, ядра которых расположены в передних рогах серого вещества спинного мозга. Ритмичную смену вдоха и выдоха, координацию деятельности спинно-мозговых нервов обеспечивает дыхательный центр (ДЦ), расположенный в продолговатом мозге.

В варолиевом мосту находится пневматаксический центр, который совместно с ДЦ служит регулятором ритма дыхания. В регуляции ритма дыхания, его частоты и глубины большое значение имеют лёгочные рецепторы, импульсация от которых по блуждающим нервам поступает в ДЦ. Главным фактором, регулирующим дыхание, является концентрация СО2 в крови (повышение его содержания ведёт к усиленным сокращениям дыхательной мускулатуры и увеличению МОД) и сопровождается удалением избыточного СО2 из организма.

Гомеостатический механизм регуляции содержания О2 и СО2 в крови связан с наличием в сонных артериях рецепторов, чувствительных к изменениям химического состава крови и обеспечивающих быстрые реакции ДЦ на изменения напряжения О2 и СО2 в крови. Центральные хеморецепторы, расположенные на поверхности продолговатого мозга, реагируют на изменения СО2 в ликворе. (см. Танец – это спорт)

Регуляция дыхания направлена не только на автоматическое поддержание гомеостатических констант парциального давления О2 и СО2, но и на предупреждение возможных отклонений. При нарушениях дыхания и механизмов его регуляции возникают изменения газового состава крови.

Некоторые патологии внешнего дыхания

Тахипно́э или «дыхание загнанного зверя» — учащённое поверхностное дыхание (ЧД свыше 20 дыхательных движений в минуту). Учащённое дыхание возникает обычно при раздражении дыхательного центра продуктами жизнедеятельности организма (углекислый газ). Наблюдается при анемии, лихорадке, заболеваниях крови. При желании может вызываться усилием воли (гипервентиляция), например, перед предполагаемой задержкой дыхания. При истерии частота дыхательных движений может достигать 60—80 в минуту.

Брадипно́э — патологическое урежение дыхания — развивается при понижении возбудимости дыхательного центра, либо при угнетении его функции, которое может быть вызвано повышением внутричерепного давления (опухоль головного мозга, менингит, кровоизлияние в мозг, отёк мозга) или воздествием на дыхательный центр накопившихся в значительных количествах в крови токсических продуктов метаболизма (уремия, печёночная или диабетическая кома, некоторые острые инфекционные заболевания и отравления).

Апно́э (др.-греч. ἄπνοια, дословно «безветрие»; отсутствие дыхания) — отсутствие или остановка дыхательных движений. Патологический процесс, связанный с патологией дыхательной мускулатуры, например, отравление ядом, действующим подобно кураре либо параличом дыхательного центра, например, в результате отёка мозга или черепно-мозговой травмы. Отдельно выделяют синдром обструктивного апноэ сна, вызываемый провисанием верхних дыхательных путей. Этот вид апноэ обычно встречается у людей, которые храпят во сне, и является плохим прогностическим признаком в плане риска развития острой сердечно-сосудистой недостаточности. (см. Физическое и психологическое старение)

Так называемое рефлекторное или «ложное апноэ» иногда наступает при сильном раздражении кожи (например, при погружении тела в холодную воду). Апноэ (как патологическое состояние) также следует отличать от искусственно вызванной задержки дыхания (например при погружении в жидкость) — в результате развившегося кислородного голодания (на фоне прекращения поступления кислорода из атмосферного воздуха в альвеолы) происходит отключение коры головного мозга (потеря сознания или прекращение процессов высшей нервной деятельности) после чего подкорковые и стволовые структуры (дыхательный центр) дают команду на вдох. Если при этом атмосферный воздух проникает в лёгкие, то по мере достижения кислородом тканей и органов (в том числе и ЦНС) происходит спонтанное восстановление сознания. Если тело находится в жидкой среде, то происходит проникновение жидкости в дыхательные пути и развивается утопление (обычное или «сухое», связанное с ларингоспазмом).

Одышка или диспно́э — нарушение частоты и глубины дыхания, сопровождающееся ощущением нехватки воздуха. В случае патологических изменений сердечной мышцы одышка поначалу появляется при физической нагрузке, а затем возникает и в покое, особенно в горизонтальном положении (в связи с увеличением венозного возврата крови к сердцу), заставляя пациента принимать вынужденное положение сидя, способствующее депонированию венозной крови системы нижней полой вены в ногах (ортопное). (см. Массаж при эмфиземе легких) Приступы резкой одышки (чаще ночные) при заболеваниях сердца — проявление сердечной астмы: одышка в этих случаях инспираторная (затруднён вдох). Экспираторная одышка (затруднён выдох) возникает при сужении просвета мелких бронхов и бронхиол (например, при бронхиальной астме) или при потере эластичности лёгочной ткани (например, при развитии хронической эмфиземе лёгких). «Мозговая» одышка возникает при непосредственном раздражении дыхательного центра (опухоли, кровоизлияния и другие этиологические факторы).

Системы дыхания спортсменов

Литература:

1. Биологический энциклопедический словарь. Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

2. Биология. Современная иллюстрированная энциклопедия. Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

3. Физиология человека. В 3-х т. Т. 2. Пер с англ. / Под ред. Р. Шмидта и Г. Тевса. — М.: Мир, 1996. — 313 с.: ил.

4. Анатомия человека / Привес М. Г., Лысенков Н. К. — 9-е изд., перераб. и доп. — М.: Медицина, 1985. — С. 300—314. — 672 с. — (Учебная литература для студентов медицинских институтов).

5. Пропедевтика внутренних болезней / В. Х. Василенко. — 3-е изд., перераб. и доп. — М.: Медицина, 1989. — С. 93. — 512 с. — (Учебная литература для студентов медицинских институтов).

6. Клиническая эндокринология. Руководство / Старкова Н. Т. — 3-е изд., перераб. и доп. — СПб: Питер, 2002. — С. 244. — 576 с. — («Спутник Врача»).

7. Симптомы и синдромы в эндокринологии / Под ред. Ю. И. Караченцева. — 1-е изд., Харьков, 2006. — С. 15-16. — 227 с. — (Справочное пособие).

Фото с сайта PxHere Team


Английский
дыхание – breath
грудная полость – thoracic cavity
система внешнего дыхания – respiratory system
параметры дыхательной системы – parameters of the respiratory system
таблицы Гаррис-Бенедикта – Table Harris-Benedict
оценки и пробы функций дыхания – evaluation and tests of respiratory function


<< Назад: Физкультура и спорт, избранные статьи



Наверх


Рекомендуем Вам посмотреть популярные разделы сайта myvaleology.com: MENU с описанием разделов


СОЦСЕТИ ВКЛАД ДИЕТА СПОРТ
Написать администратору Карта сайта Английский язык

Версия all4-8